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Solution of the Ornstein–Zernike Equation
in the Critical Region
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A new numerical scheme for the solution of liquid state integral equations
using the Baxter factorization of the Ornstein–Zernike equation is proposed.
For short range potentials the method yields reliable results over the whole
fluid region, including the vicinity of the critical point, and opens up new
possibilities for numerical study of the critical behavior of integral equa-
tion approximations. To demonstrate the effectiveness of the method, numer-
ical results are compared with the analytical solution of the mean spherical
approximation for a hard-core plus Yukawa tail interaction potential. Accu-
rate results for the critical exponents δ, γ, and η for this model are obtained.

KEY WORDS: critical exponents;integral equations; Ornstein–Zernike; thermo-
dynamics.

1. INTRODUCTION

One of the fundamental challenges of liquid state theory is the calculation
of bulk thermodynamics and structure given a particular model interaction
potential. If the fluid structure lies close to that of hard spheres, then pertur-
bation theory provides a good approximation for the pair correlations and
thermodynamic quantities. The situation is less satisfactory if the interac-
tion potential contains an attractive component, which causes the structure
to deviate strongly from the reference system. In particular, if the system
undergoes a liquid–gas transition, then perturbation theory yields an inade-
quate description of the critical region with mean-field values for the critical
exponents. An alternative non-perturbative approach capable of trancending
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these difficulties is the method of integral equations, formed by approximate
closures of the Ornstein–Zernike (OZ) equation. Integral equation approx-
imations are essentially uncontrolled diagrammatic resummation schemes
that can yield spectacular results in certain cases and are not necessarily
mean-field in character. However, as most integral equations can only be
solved numerically, assessing the critical behavior of a given integral equa-
tion is a non-trivial task.

The most familiar closures are the Percus–Yevick (PY), hypernetted-
chain (HNC), and mean spherical approximation (MSA) [1–3]. Even for
these relatively simple closures, there has been much confusion regard-
ing the critical behavior. Important insight was gained from the analyti-
cal solution of the MSA for the special case of a pair potential with a
hard-core plus attractive Yukawa tail (HCYF) [4, 5]. Extensive analysis of
this solution confirmed that there exists a locus of points in the density–
temperature plane along which the compressibility, as calculated from the
long wavelength behavior of the structure factor, diverges, i.e., there exists
a true spinodal line [6–8]. It was also confirmed that at the compressibility
critical point the solution exhibits the expected mean spherical exponents
but, due to the thermodynamic inconsistency of the approximate MSA
pair correlation functions, the virial and energy routes exhibit mean field
behavior. Comparisons between analytic and numerical results exposed the
deficiencies of traditional numerical solution methods in the vicinity of the
critical point and highlighted the need for extremely accurate numerical
work when attempting to determine values for the critical exponents [9,
10]. No analogous analytical solution exists for the HNC equation, and
we must rely on numerical results. In a detailed numerical study, Belloni
[10] concluded, in contrast to previous findings, that the HNC approxi-
mation does not present a true spinodal curve but simply a region within
which no convergent solution can be obtained. This region was previously
identified with the spinodal due to the large values of the compressibil-
ity obtained on the boundary [11, 12]. Using a modified numerical algo-
rithm, Belloni revealed that the compressibility, albeit large, remains finite
everywhere and that the boundary line does not constitute a true spin-
odal curve. It follows that there exist no critical exponents for the HNC
approximation. The critical behavior of the PY equation was also the sub-
ject of confusion following several numerical studies in which a divergence
of the compressibility along the boundary line and mean-field values for
the critical exponents were claimed [13–18]. The situation was greatly clar-
ified by the existence of an analytic solution, in this case for the adhe-
sive hard-sphere model of Baxter [19]. Baxter’s solution was studied in
detail by Fishman and Fisher [20], who confirmed the predicted mean-field
exponents and the existence of a true spinodal line on the liquid side of
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the critical point. However, the compressibility remains finite on the vapor
side of the boundary line, in contradiction to the numerical findings. Sub-
sequent numerical studies with improved resolution [21, 22] confirmed the
analytic result.

The general picture which emerges is that unambiguous assessment
from first principles of the critical behavior of a given integral equation
closure requires extremely careful analysis, and that no general technique
exists for such studies. The aim of the present work is to develop a gen-
eral purpose numerical method which can be applied to an arbitrary inte-
gral equation closure to yield accurate results over the entire fluid region,
including the vicinity of the critical point, without need for any supple-
mentary analytical information. The paper will be structured as follows: In
Section 2, we review and comment upon some existing schemes for numer-
ical solution of integral equations with particular emphasis on the per-
formance close to the critical point. In Section 3, we give details of the
new algorithm. In Section 4, we compare our numerical results with the
analytical results of the MSA for the HCYF and in Section 5, we dis-
cuss the significance of the results and suggest possible further develop-
ments.

2. NUMERICAL SOLUTION OF THE ORNSTEIN–ZERNIKE
EQUATION

The OZ equation relates the direct correlation function c(r) to the total
correlation function h(r)=g(r)−1. In real space it can be written as

h(r)= c(r)+ 2πρ

r

∫ R

0
dx xc(x)

∫ x+r

|x−r|
dy yh(y), (1)

where ρ ≡N/V denotes the particle number density and c(r)=0 for r >R.
We take the particle diameter σ as our unit of length. In Fourier space,
the OZ equation is given by

h̃(q)= c̃(q)

1−ρ c̃(q)
, (2)

where c̃(q) is the Fourier transform of c(r). When supplemented by an
independent relation between h(r) and c(r) (a closure relation), the OZ
relation yields a closed integral equation for the pair correlation functions
of the system. Although a formal closure is known in terms of an infi-
nite series of integrals over h(r) [23], this series is not useful for practi-
cal implementation. Integral equation theories attempt to approximate this



Solution of the Ornstein–Zernike Equation in Critical Region 397

complicated functional relationship by a simpler local algebraic relation
between c(r) and h(r).

2.1. Standard Algorithms

The simplest method of numerical solution is Picard iteration [1].
When using the real space form Eq. (1) initial guesses c0(r) and h0(r) are
made and inserted into the R.H.S. This yields a new estimate h1(r) which
is input to the closure relation to yield an improved estimate c1(r). This
procedure usually only converges at low densities, and in order to obtain
convergence at higher densities, it is necessary to mix old and new esti-
mates to obtain a converged solution [1, 24, 25]. When using the Fourier
space version Eq. (2), an analogous procedure can be followed by incor-
porating a numerical Fourier transform. In practice, Eq. (2) is generally
preferred due to the fast-Fourier-transform (FFT) algorithm which can be
used to avoid time consuming evaluation of real space convolutions [26].
A significant improvement upon direct iteration was made by Gillan [27],
who developed a hybrid technique combining Picard iteration with the
Newton–Raphson method. The resulting algorithm and subsequent refine-
ments [28] provide not only vastly increased convergence rates but also
prove more stable than straightforward iteration. An even more efficient
algorithm using Newton–Raphson alone was proposed by Zerah [29]. All
of these improved schemes make use of the Fourier space version Eq. (2).

Despite the success of these algorithms, there remains an intrinsic lim-
itation of all methods-based directly on Eqs. (1) and (2). It is known that
for short-range potentials the function c(r) is of shorter range than h(r)

[1]. However, it is apparent from Eq. (1) that although full solution of
the problem requires information only within the range (0,R) [the range
over which c(r) is non-zero], an asymptotic form must be assumed for
h(r) over the range (R,2R). In practice, the condition h(r)=0 for (R,2R)

is usually employed and yields accurate results at non-critical statepoints,
provided that R is chosen sufficiently large. The problem occurs upon
approaching the critical point. At the critical point, the correlation length,
ξ , diverges, and h(r) becomes long ranged, thus invalidating the assump-
tion that h(r)=0 in the range (R,2R) for any finite choice of R. The sit-
uation becomes worse if Eq. (2) is used. Close to the critical point, h̃(q)

exhibits a high and narrow peak of width ∼ ξ−1. In order to correctly
resolve this peak, the numerical Fourier transforms within the iterative
cycle require a grid spacing �q ≡2π/R <ξ−1, which is violated as ξ →∞.
Insufficient resolution of the low q behavior of h̃(q) leads to incorrect val-
ues of c(r) at low r values and subsequent inaccuracies in calculating the
compressibility.
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2.2. Ornstein–Zernike Technique

To correct these failings, Belloni [10] considered a modified version
of Zerah’s algorithm [29] in which analytic reference functions are sub-
tracted and added before and after the numerical Fourier transform (the
OZ technique). In the case of the MSA closure, both the small q behavior
of h̃(q) and large r behavior of h(r) are known and can be used to self-
consistently impose the correct asymptotics within each numerical cycle.
In this way, the resolution of the numerical MSA solution can be greatly
improved in regions of high compressibility. For approximations which do
not possess known asymptotic behavior, some approximate form must be
assumed. In Ref. 10, Belloni employed the same MSA-type reference func-
tions to study the HNC and PY boundary lines. This assumption was
found to improve the resolution sufficiently to confirm the absence of a
true spinodal in both cases. We can speculate that this is a consequence of
the finite compressibility on the HNC and (partially) PY boundary lines,
and that supplementing the numerical algorithm with approximate analytic
expressions for the asymptotics is sufficient in such cases. Given an inte-
gral equation exhibiting true power law behavior, but with unknown pair
correlation asymptotics, it is not clear to what extent the modified algo-
rithm would continue to improve the resolution close to the spinodal.

2.3. Baxter Equation

Throughout all of these developments, a potential solution to the
problem was already at hand in the little known papers of Watts [13, 30,
31] who employed a very different numerical scheme based on the analytic
work of Baxter [32]. Using a Wiener–Hopf type analysis, Baxter derived
an alternative form of the OZ equation which involves h(r) and c(r) only
over the range (0,R). Baxter’s alternative form is given by

H(r)= C(r)+2πρ

∫ r

0
ds

∫ s

0
dt H(t)H(s − t)

+4πρ

∫ R

0
ds C(s)

[∫ s

0
dt H(t)−

∫ |r−s|

0
dtH(t)

]

+4π2ρ2
∫ R

0
ds C(s)

∫ r

0
dt W(s, t), (3)

where H(r)= rh(r),C(r)= rc(r), and W(s, t) is given by

W(s, t) =
∫ s

0
dv H(v)

∫ s−|t−v|

|s−t−v|
duH(u), s > t (4)

W(s, t) = −W(t, s).
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This expression is fully equivalent to Eq. (1) under the assumptions that
c(r) = 0 for r > R and that the spatial integral of h(r) is absolutely con-
vergent (a condition satisfied for any disordered fluid).

It is known that the exact c(r) becomes long ranged in the vicinity of
the critical point, so the condition that c(r)=0 for r >R cannot be exactly
satisfied for any finite choice of R. However, for short-ranged potentials,
a numerical treatment based on truncation of c(r) is certainly far superior
to the truncation of h(r) required by Eqs. (1) and (2). A good example
of this is provided by the HNC approximation, for which the asymptotic
tail c(r) ∼ h2(r)/2 clearly decays much faster than h(r). For approxima-
tions with asymptotic behavior c(r)∼−βφ(r) [33], where β = 1/kBT and
φ(r) is the pair potential, Eq. (3) can provide results of arbitrary accuracy.
Watts used a Newton–Raphson method to solve the simultaneous equa-
tions arising from discretization of Eq. (3) and found that convergence
could be obtained with as few as five or six iterations. This method was
used to study the Lennard-Jones fluid within the PY and HNC approxi-
mations [13, 30, 31]. A copy of Watts code was also used by Henderson
and Murphy [14] to study the critical region of the same model system in
the PY approximation.

We have made a careful numerical evaluation of Eq. (3) using the
Newton–Raphson method (following Watts [13]) and, for comparison, a
new Picard iteration scheme. Taking the analytic solution of the MSA
for the HCYF as a benchmark, we obtain excellent agreement for the
structure and thermodynamics using both methods. The accuracy of the
numerical solution does not deteriorate within the critical region, and
the absolute error remains essentially constant over the entire fluid region
of the phase diagram, exhibiting only a very gradual increase with density
due to the increasing structure of the correlation functions. A particu-
larly impressive feature of the Picard solution method is the stability when
compared to an iterative solution of the original OZ equation Eq. (1).
At all state points, it is possible to begin with an ideal-gas initial solu-
tion, H(r) = C(r) = −r for r < σ , and achieve full convergence within
fewer than 100 iterations. For densities greater than πρ/6 ≈ 0.2, it is nec-
essary to mix old and new solutions at each iteration. Using the Newton–
Raphson method, we find that convergence generally occurs in fewer
than 10 iterations, which is consistent with the observations of Watts. In
general, the Newton–Raphson algorithm is marginally more stable than
Picard iteration.

Unfortunately this method has some drawbacks. The primary diffi-
culty is the high-computational load introduced by the multiple integrals,
all of which must be evaluated in real space to avoid the problems of reso-
lution in Fourier space discussed in Section 2.1. The most computationally
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demanding task is evaluation of the matrix W(s, t), which requires a dou-
ble integration for each (s, t) pair. An associated limitation is the numeri-
cal accuracy with which the multiple integrals can be evaluated. To obtain
results within practical time scales, it is necessary to compromise high-
accuracy simply in order to reduce the number of grid points. Sufficient
accuracy is generally achieved for grid spacings �r < 0.01σ , which places
practical limits on the maximum value of the cutoff R, which can be
considered. For pair potentials requiring R ∼ 10σ or greater, this would
seem to make the method unsuitable for large scale investigations requir-
ing repeated solution of the OZ equation, e.g., calculation of the coex-
istence curve. On balance, we recommended Picard iteration rather than
Newton–Raphson for the implementation of this method, as the slight
increases in convergence rate and stability do not warrent the increased
programming effort.

2.4. Baxter Factorization

Shortly after deriving Eq. (3), Baxter developed a second alternative
version of the OZ equation [34]. The resulting expressions are considerably
simpler than Eq. (3) due to the introduction of an additional auxiliary
function which allows Eq. (1) to be decomposed into a pair of simulta-
neous equations. The new expressions are completely self-contained over
the range (0,R) and are given by

rh(r) = −q ′(r)+2πρ

∫ r

0
dt q(t)(r − t)h(|r − t |),

rc(r) = −q ′(r)+2πρ

∫ R

r

dt q(t)q ′(r − t), (5)

where q ′(r) is the spatial derivative of the factor function q(r). A straight-
forward derivation of Eq. (5) can be found in Appendix B of Ref. 1.
This form has proved extremely useful for analytic work, but also forms
a potential basis for a numerical algorithm. Using the analytical solution
of the HCYF in the MSA it has been shown that the factorized equations,
Eq. (5), possess additional, unphysical solutions which are not solutions of
the original OZ equation, Eq. (1). Imposing the additional constraint that
the pair correlation functions remain bounded is sufficient to eliminate
these unphysical solutions [35]. The assumptions underlying Eq. (5) are the
same as for Eq. (3), namely that c(R)= 0 for r >R and that the integral
of h(r) remains finite, and so all the advantages of Eq. (3) in the vicinity
of the critical point are retained. In addition, the factorized form elimi-
nates the multiple integrals, which are so detrimental to the performance
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of methods based on Eq. (3). The possibility of numerical implementation
of Eq. (5) was first suggested by Watts [36], who reported a private com-
munication from Baxter. However, the first attempt to implement such a
scheme was only made much later by Cummings and Monson [37]. In this
study, both Picard and Newton–Raphson schemes were devised but, due
to problems of both accuracy and stability, the results were inconclusive.
A very brief preliminary report of an apparently successful implementa-
tion of Eq. (5) is given in Ref. 38. Unfortunately, the authors do not give
details of the numerical algorithm and only confirm the power law decay
of h(r) at the critical point. No further assessment was made.

3. NEW SOLUTION METHOD

We now give details of the new iteration scheme based on the factor-
ized equations, Eq. (5). We first specialize to the case of pair potentials
with a hard core, as this allows the clearest illustration of the method.
Application to potentials with a softer repulsion is then straightforward.
The cycle begins by taking the low-density forms of the functions ci, hi, qi ,
and q ′

i as initial guesses. Improved estimates are generated according to

rhi(r) = −q ′
(i−1)(r)+J(i−1)(r), r�σ, (6)

rci(r) = −q ′
(i−1)(r)+ I(i−1)(r), r <σ, (7)

q ′
i (r) = −rh(i−1)(r)+J(i−1)(r), r <σ, (8)

q ′
i (r) = −rc(i−1)(r)+ I(i−1)(r), r�σ, (9)

where I and J are given by

Ii(r) = 2πρ

∫ R

r

dt qi(t)q
′
i (r − t), (10)

Ji(r) = 2πρ

∫ r

0
dt qi(t)(r − t)hi(|r − t |). (11)

The use of different terms of the factorization Eq. (5) to account for
different spatial ranges stabilizes the iterative cycle. Using the fact that
q(R)=0, we obtain q(r) from q ′(r) at each iteration using

qi(r)=−
∫ R

r

dt q ′
i (t). (12)

The missing information, h(r) for r < σ and c(r) for r > σ , is obtained
from the appropriate closure relation. For example, the MSA is imple-
mented by imposing
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hi(r) = −1, r <σ, (13)

ci(r) = −βφ(r), r�σ, (14)

whereas the formally exact closure of the OZ equation is implemented
using

hi(r) = −1, r <σ, (15)

ci(r) = −βφ(r)− ln[1+h(i−1)(r)]

+b(r)+h(i−1)(r), r�σ, (16)

where b(r) is the bridge function. For potentials with a softer repulsion,
the core condition Eq. (15) should be replaced with the appropriate clo-
sure condition on h(r). In the exact case, Eq. (15) should be replaced by

hi(r)= exp[−βφ(r)+h(i−1)(r)− c(i−1)(r) + b(r)]−1, r <σ. (17)

In such cases, the value of σ is not clearly defined but, in practice, it is
sufficient to choose a value below which the repulsive part of the potential
dominates. For example, the commonly studied Lennard-Jones potential is
given by

φ(r)=4ε

[(σLJ

r

)12 −
(σLJ

r

)6
]

, (18)

where σLJ and ε are parameters controlling the length scale and poten-
tial strength, respectively. We find that choosing σ =σLJ provides well con-
verged solutions at all state points outside the no-solution boundary. In
Fig. 1, we compare results for g(r) obtained using the new algorithm with
those of a modified Newton–Raphson–Picard algorithm, based on Eq. (2),
for a state point close to the triple point, T ∗ ≡ kBT /ε = 0.72, ρ = 0.85.
We give results for both the HNC equation, obtained by setting b(r)= 0
in Eqs. (16) and (17), and the MHNC equation [39], for which b(r) is
approximated by the PY hard-sphere expression. The density entering the
bridge function is treated as an adjustable parameter to enforce thermody-
namic consistency. In both cases, the agreement between the two numerical
methods is perfect. On approaching the critical point, differences emerge
as the traditional algorithm begins to display erroneous finite-size effects
resulting from truncation of h(r). An alternative approach to solving
Eq. (5) is to employ a continuous crossover function to impose Eq. (17)
within the core region and Eq. (6) outside. Convergence is not sensitive
to the details of this choice, but for stability, the closure relation should
be used to determine new esimates for h(r) inside the strongly repulsive
region and c(r) outside this region.
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r/σ
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g(r)

MHNC

HNC

Fig. 1. Comparison of the results of the new algorithm (lines)
with those of a modified Newton–Raphson–Picard method (cir-
cles) within the HNC and MHNC approximations for a Lennard-
Jones fluid close to the triple point, T ∗ =0.72, ρ =0.85.

To monitor the level of convergence, we calculate the squared norm
of h(r) at each iteration

∫ ∞

0
dr[hi(r)−h(i−1)(r)]

2. (19)

A value less than 10−11 usually ensures a well converged solution. When
very high accuracy is required, i.e. when working close to the critical
point, smaller values are necessary to guarantee a satisfactory solution.
We have tested a range of different pair potentials and closures and find
that convergence is generally achieved in fewer than 100 iterations, a result
which is independent of proximity to the critical point. Using low-density
initial solutions, it is necessary to mix old and new solutions but in all
cases the stability and convergence is far superior to standard Picard itera-
tion on the original form of the OZ equation. Iteration schemes based on
Eq. (2) typically fail to converge for densities 0.1<πρ/6<0.14 when ideal
gas initial guesses are used without mixing, the precise details depend-
ing upon the interaction and the closure under consideration. In contrast,
the new scheme can typically be used with no mixing up to a density of
πρ/6 ≈ 0.3. We find that in many cases mixing as little as 45% of the
solution from the previous iteration is sufficient to obtain convergence at
all fluid densities, i.e. up to πρ/6 = 0.494, from ideal gas initial solutions.
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These observations suggest that Eq. (5) provides a more appropriate start-
ing point for numerical work than Eq. (1). We also note that by starting
with low-density initial guesses we did not encounter any difficulties with
the unphysical solution branches known to exist for some closures (see e.g.
Ref. 35). This suggests that such solutions may be unstable with respect to
the current iterative solution scheme.

The reduced isothermal compressibility, χred =ρkBT χT , is usually cal-
culated using the long wavelength limit of the Fourier transform of the
direct correlation function, χ−1

red =1−ρc̃(0). It is a simple exercise to show
that this standard definition is equivalent to

χ−1
red =

(
1−2πρ

∫ R

0
dt q(t)

)2

. (20)

We employ this alternative definition in our subsequent calculations as we
find it to be less sensitive to numerical error than the standard relation.

4. COMPARISON WITH ANALYTIC RESULTS

In order to test the performance of our method in the vicinity of the
critical point, we compare numerical results with the analytic solution of the
MSA for the HCYF [4–8]. The HCYF is defined by the pair interaction

βφ(r) = ∞, r <σ

= −(K/r) exp [−z(r −1)], r�σ, (21)

where K is a parameter controlling the strength of the attraction (expressed
in units of kBT ) and z sets the range of the potential. We consider
the value z = 2 for which the liquid–gas coexistence curve is known to
be strongly stable with respect to the freezing transition. To provide a
demanding test of our algorithm, we focus on the exponents δ, γ , and η

which describe the divergence of χred along the critical isotherm, the diver-
gence of χred along the critical isochore and the decay of the total corre-
lation function h(r), respectively. The exponents are defined by

χred ∼|�ρ|1−δ, T = Tcrit,

χred ∼|t |−γ , ρ = ρcrit, (22)

h(r)∼ r−1−η, T = Tcrit, ρ =ρcrit,

where �ρ = ρ/ρcrit − 1 and t = T/Tcrit − 1. The MSA is known to yield
mean spherical values for the exponents, δ = 5, γ = 2, and η = 0 [8]. In
order to obtain numerical estimates of the exponents, we consider the
following effective exponents.



Solution of the Ornstein–Zernike Equation in Critical Region 405

δeff = −d(ln χred)

d(ln �ρ)
+1, γeff =−d(ln χred)

d(ln t)
,

ηeff = −d(ln h(r))

d(ln r)
−1. (23)

Upon approaching the critical point sufficiently closely, the effective expo-
nents become equal to the true exponents. The third relation for ηeff refers
to the asymptotic long-range behavior of h(r). Analysis of the effective
exponents also gives useful information regarding the extent of the asymp-
totic region about the critical point.

Figure 2 shows the numerically determined spinodal for z = 2 in the
reduced density–temperature plane. Our numerical routine yields values of
χred as high as 1020 on the boundary, from which it can be concluded with
some confidence that the MSA possesses a true divergence on the spin-
odal boundary. The arrows in the figure indicate the paths taken in order
to calculate the effective exponents δeff and γeff . In Fig. 3a, we show the
inverse fourth root of χred as a function of ρ along the numerically deter-
mined critical isotherm. In order to identify the critical point, we calculate
χ

−1/4
red as a function of ρ for increasing values of K. The point at which

this curve first touches the axis upon increasing K identifies the critical
density ρcrit. Our best numerical estimate of the critical point is πρcrit/6=
0.1659785, Kcrit =1.1143650, which is in excellent agreement with the exact
values πρcrit,ex/6 = 0.165978,Kcrit,ex = 1.114384, and demonstrates the

0 0.1 0.2 0.3 0.4

πρ/6

0

0.2

0.4

0.6

0.8
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1.4

T

δ
eff

γ
eff

Fig. 2. The numerically determined spinodal line for the HCYF
in the MSA for z=2. The vertical axis is the reduced temperature
T = 1/K. Arrows indicate the paths taken to identify the expo-
nents δ and γ .
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Fig. 3. Numerical determination of the exponent δ

(a) Shows the fourth root of the inverse isothermal compress-
ibility along the numerically determined critical isotherm.
The linear behavior is consistent with the analytic result
δ = 5. The critical region in which δ assumes its exact value
is indicated with an ellipse (b) Shows the effective exponent
δeff = −d(ln χred)/d(ln �ρ) + 1 as a function of the logarithm of
the reduced density �ρ = (ρ/ρcrit − 1). As the critical point is
approached, δeff saturates to the value δ =5.
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resolution attainable using the new algorithm. The apparently linear
behavior on either side of the critical point suggests a value δ =5. In Fig.
3b, we analyze this behavior more closely by plotting δeff as a function
of reduced distance in density from the numerical critical point. As the
critical point is approached, δeff saturates, unambiguously identifying the
mean-spherical value δ =5 in accordance with the exact solution. The two
branches in this figure correspond to sections of the isotherm above and
below ρc. In calculating this result, we experimented with a number of
different values for the cutoff R, gradually increasing the value until no
appreciable changes occured in the solution. For non-critical statepoints,
a value of R ∼ 6σ was found to be sufficient for the present value of z.
Close to the critical point, this value had to be extended significantly. The
solution at the critical point was found to stabilize for R > 10σ . In the
present case, c(r) is given analytically for r >σ from which it follows that
c(R)<10−9 for r >10σ . It appears that c(r) must assume values very close
to zero in the vicinity of the cutoff in order for the method to yield highly
accurate results near the critical point. For the present calculations, we use
a grid spacing �r =0.01σ and cutoff value R =10σ .

Figure 4a shows χred as a function of reduced temperature dis-
tance from the critical point along the numerically determined critical
isochore on a log scale. As the critical point is approached, the depen-
dence becomes linear. In Fig. 4b, we examine this dependence more closely
and show γeff as a function of log10(t). For values of t <10−3, the effective
exponent saturates to the mean-spherical value γ =2 as expected. We find
the identification of γ somewhat easier than of δ as the saturation lim-
its of the effective exponent are less sensitive to errors in the location of
the critical point. An approach along isochores for which ρcrit is perturbed
by a small amount yields saturating curves very similar to Fig. 4a, all of
which give a value γ =2. In contrast, the effective exponent δeff shown in
Fig. 3b is sensitive to errors in ρcrit and Kcrit.

We next analyze the quality of the numerically determined h(r) by com-
parison with the analytic expression of Kahl [40]. Figure 5a shows both the
numerical total correlation function h(r) and the exact function evaluated
at the numerical critical point. The two curves are indistinguishable on the
scale of the figure. The inset focusses on the region from r = 2σ → 6σ and
clearly shows the onset of the asymptotic decay for r ∼5σ . This figure should
be contrasted with Fig. 5 in Ref. 9, which displays the discrepancies in h(r)

typical of traditional solution algorithms when applied in the critical region.
In particular, the decay of the asymptotic tail is perfectly captured up to the
cutoff value R using our new algorithm. In Fig. 5b, we show ηeff as a func-
tion of distance obtained from the critical h(r). For r ∼ 6σ , the effective
exponent saturates to the mean-spherical value of zero.
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Fig. 4. Numerical determination of the exponent γ . (a) shows
the logarithm of the reduced compressibility as a function of
log10 t , where t = T/Tc − 1. (b) shows the effective exponent
γeff = −d(ln χred)/d(ln t) as a function of log10 t . As the critical
point is approached, γeff saturates to the analytic value γ =2.

5. DISCUSSION

We have presented a new numerical algorithm for solution of the OZ equa-
tion which, for short-range potentials, remains accurate in the vicinity of the
critical point. By using the Baxter factorization, Eq. (5), as a basis for our
method, we bypass the difficulties caused by the divergence of the correlation



Solution of the Ornstein–Zernike Equation in Critical Region 409

1 2 3 4 5

r/σ

r/σ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

h(
r)

2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1

(a)

(b)

4 5 6 8 932 7 10
–2

–1

0

1

2

3

η
eff

Fig. 5. Numerical determination of the exponent η. (a) com-
pares the numerical h(r) (line) with the analytic result (circles)
at the numerically evaluated critical point πρc/6 = 0.1659785,
Kc =1.1143260. The inset gives a more detailed view of the onset
of the asyptotic decay in h(r). (b) shows the effective exponent
ηeff = −d(ln h(r))/d(ln r) − 1 as a function of r. The asymptotic
behavior confirms the analytic result η=0.

length upon approaching the critical point. The method is very stable and
should facilitate future studies of the critical behavior of new integral equa-
tion approximations. The true values of the exponents are currently believed
to be δ ≈4.8, γ ≈1.24, and η≈0.1 [41]. The fact that the present algorithm can
resolve correctly the MSA values δ = 5, γ = 2, and η = 0 suggests that it will
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indeed be useful for analyzing new integral equation approximations which
aim to improve the description of the critical region.

We would like to emphasise that any criticism made of established
numerical solution algorithms applies purely to the critical region. At state
points removed from the critical point, for which the truncation of h(r) is
not restrictive, we find the hybrid [27, 28] and Newton–Raphson [29] tech-
niques to be both fast and accurate, and we fully recommend them. The
fact that our new algorithm does not employ the FFT naturally makes it
slower than methods based on Eq. (2) [although it remains much faster
than methods based on (3)]. It may therefore be useful to consider the
development of a two-stage algorithm, which first solves the integral equa-
tion using a hybrid or Newton–Raphson method based on Eq. (2) and
then refines this solution, if neccessary, by using the new algorithm. A sim-
ple approach would be to monitor the compressibility obtained from the
first stage to determine whether refinement is necessary. In this way, one
may take advantage of the existing optimizations while retaining accuracy
close to the critical point.

Many more sophisticated closures have been proposed which attempt
to improve upon the HNC, PY, and MSA [1, 3]. The most common
source of improvement comes from the enforcement of thermodynamic
consistency between two of the three thermodynamic routes (energy, virial,
or compressibility) by including an additional variational parameter in
the theory. Analysis of thermodynamically consistent theories in the crit-
ical region is more difficult than for the traditional closures due to the
increased computational demands. Our new algorithm can be easily incor-
porated into such schemes and the accuracy it provides, particularly in
regions of high compressibility, may well be advantageous when solving
the consistency relations. It is often the case that thermodynamic con-
sistency is imposed locally using exact relations between either the com-
pressibility and the density derivative of the virial pressure or between
the temperature derivative of the compressibility and the second density
derivative of the internal energy [42]. All of these quantities can be eval-
uated from simple spatial integrals over functions containing density or
temperature derivatives of h(r) and c(r). These correlation function deriv-
atives are readily obtained by solving the coupled linear integral equations
which result from direct differentiation of Eq. (5). This local procedure of
evaluation is superior to the common finite difference approximation to
the derivative obtained by solving the OZ equation at closely neighboring
state points. Our preliminary results suggest that this method yields highly
accurate results for the quantities ∂Pvirial/∂ρ, ∂2uex/∂ρ

2, and ∂χ−1
red/∂T ,

where Pvirial is the virial pressure and uex is the excess internal energy per
unit volume, required by many consistency schemes. The use of our new



Solution of the Ornstein–Zernike Equation in Critical Region 411

algorithm in solving thermodynamically consistent approximations will be
the subject of further investigation.

Although the verification of the MSA exponents using our algorithm
is very satisfactory, the extent of the asymptotic region surrounding the
critical point for a given integral equation is generally not known. Our
results for the HCYF in the MSA suggest that our algorithm can yield
accurate results for the effective exponents for values of �ρ and t as low
as 10−4. However, we are aware of an example for which the true asymp-
totic behavior only occurs for smaller values. The self-consistent Orn-
stein–Zernike approximation (SCOZA) of Høye and Stell [43–45], and Pini
et al. [46] is a modification of the MSA, which incorporates a local ther-
modynamic consistency between the energy and compressibility routes.
The full numerical solution required for an arbitrary pair potential is still
an open problem, but for the special case of a HCYF one can take advan-
tage of the analytical MSA solution to yield a quasi-analytic theory, which
can be studied arbitrarily close to the critical point [46]. Note that in
this case, solution of the OZ equation is performed analytically, and the
theory is released from the numerical difficulties addressed in this paper.
Figure 5 in Ref. 46 is the analogue of our Fig. 4 and shows the effec-
tive exponent γeff as a function of reduced temperature. Although the
curve appears to begin saturation to a value close to the exact exponent
when t ∼ 10−2, it is not until t ∼ 10−6 that the curve truly saturates and
the genuine exponent, γ = 2, is revealed. For a theory requiring numeri-
cal solution of the OZ equation, such an extremely low value of t would
appear prohibitive at the present time. The situation may be relieved to
some extent by using shorter range potentials to investigate the critical
behavior of a given closure. It is known that for the HCYF, reducing the
potential range (increasing z) enlarges the size of the asymptotic regime
[47], and thus determination of the exponents should not require such
high-numerical resolution.
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